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Introduction

● Technological advances in genomics and imaging have led to an 

explosion of molecular and cellular profiling data. 

● The rise of this biological datasets maintains a exponential growth

● This rapid increase in biological data dimension and acquisition rate is 

challenging conventional analysis strategies. 

● Machine learning advancements promise to understand the hidden 

information within the large datasets, and make accurate predictions 

than traditional approaches



Introduction

● Deep learning has inherent power to extract informative features from 

the hidden abstract representation of the data

● The main challenge of converting the abstract representation into 

machine understandable format

● Deep learning performs better than traditional machine learning 

approaches for converting the representation

● This power leads deep learning shows promising results in various 

research fields



Introduction

● Also, it has been noticed, different representations of the data makes 

more intelligent model than a single representation

○ Single modality(representation) does not capture all the aspects of the data 

representation

○ Various representation help to analysis the underlying information of the 

data

● This leads the researchers to intrigue how the deep multi-modal 

approaches solves various research problems 



Basics of Machine Learning and Deep Learning

● The two main concepts of AI

○ Machine Learning: 
■ “A computer program is said to learn from experience E with respect to some class of tasks T and performance 

measure P if its performance at tasks in T, as measured by P, improves with experience E ”- Tom Mitchell

■ Parse data, learn from that data, and then apply what they’ve learned to make informed decisions

○ Deep Learning:
■ A particular kind of machine learning 

■ Achieves great power and flexibility by learning to represent the world as nested hierarchy of concepts

■ Each concept defined in relation to simpler concepts, and more abstract representations computed in terms of 

less abstract ones



Basics of Machine Learning and Deep Learning

● Differences between machine learning and deep learning 
○ For small data, traditional machine learning performs well 

○ With the increase with data, deep learning performs better than traditional machine 

learning algorithms

○ Deep learning algorithms try to learn high-level features from data, whereas ML 

algorithms need hand-coded or defined features

○ Deep learning algorithms heavily depend on high-end machines, whereas traditional 

ML algorithms can work on low-end machines



Basics of Machine Learning and Deep Learning

● Differences between machine learning and deep learning 



Basics of Machine Learning and Deep Learning

● Machine Learning 
● Semi-supervised Classification

○ Application in Satellite Image 
Segmentation

○ MR Brain Image Segmentation
○ Gene expression data 

clustering
● Multiobjective Multiview Learning

○ Search result clustering
○ Cyberbully detection

● Multiobjective based Clustering Techniques
○ Bioinformatics
○ Information Retrieval
○ Evidence Based Medicine
○ Entity Disambiguation
○ IOT Data
○ SOM 

● Information Extraction of Biomedical Texts
○ Named entity recognition

■ Feature selection techniques 
○ Patient de-identification
○ Case similarity
○ Sentiment expressed in medical blogs
○ Chronological ordering of events



Basics of Machine Learning

● Machine Learning 
● Unsupervised Technique
● Supervised Technique
● Semi-supervised Technique
● Reinforcement Learning 



Unsupervised Technique: Clustering

◼ Finding groups of objects such that the objects in a group 

will be similar (or related) to one another and different 

from (or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized



What is Cluster Analysis?

◼ Cluster analysis (or clustering, data segmentation, …)

◼ Finding similarities between data according to the 

characteristics found in the data and grouping similar 

data objects into clusters

◼ Unsupervised learning: no predefined classes (i.e., learning 

by observations vs. learning by examples: supervised)

◼ Typical applications

◼ As a stand-alone tool to get insight into data distribution 

◼ As a preprocessing step for other algorithms



Clustering as a Preprocessing Tool (Utility)

◼ Summarization: 

◼ Preprocessing for regression, PCA, classification, and 

association analysis

◼ Compression:

◼ Image processing: vector quantization

◼ Finding K-nearest Neighbors

◼ Localizing search to one or a small number of clusters

◼ Outlier detection

◼ Outliers are often viewed as those “far away” from any 

cluster



Quality: What Is Good Clustering?

◼ A good clustering method will produce high quality 

clusters

◼ high intra-class similarity: cohesive within clusters

◼ low inter-class similarity: distinctive between clusters

◼ Quality of a clustering method depends on

◼ the similarity measure used by the method 

◼ its implementation, and

◼ its ability to discover some or all of the hidden patterns



Measure the Quality of Clustering

◼ Dissimilarity/Similarity metric

◼ Similarity is expressed in terms of a distance function, 

typically metric: d(i, j)

◼ Definitions of distance functions are usually rather 

different for interval-scaled, boolean, categorical, 

ordinal ratio, and vector variables

◼ Weights should be associated with different variables 

based on applications and data semantics

◼ Quality of clustering:

◼ There is usually a separate “quality” function that 

measures the “goodness” of a cluster

◼ It is hard to define “similar enough” or “good enough” 

◼ Answer is typically highly subjective



Considerations for Cluster Analysis

◼ Partitioning criteria

◼ Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is 

desirable)

◼ Separation of clusters

◼ Exclusive (e.g., one customer belongs to only one region) vs. non-exclusive (e.g., one 

document may belong to more than one class)

◼ Similarity measure

◼ Distance-based (e.g., Euclidean, road network, vector)  vs. connectivity-based (e.g., 

density or contiguity)

◼ Clustering space

◼ Full space (often when low dimensional) vs. subspaces (often in high-dimensional 

clustering)



Requirements and Challenges

◼ Scalability

◼ Clustering all the data instead of only on samples

◼ Ability to deal with different types of attributes

◼ Numerical, binary, categorical, ordinal, linked, and mixture of these 

◼ Constraint-based clustering

◼ User may give constraints

◼ Use domain knowledge to determine input parameters

◼ Interpretability and usability

◼ Others 

◼ Discovery of clusters with arbitrary shape

◼ Ability to deal with noisy data

◼ Incremental clustering and insensitivity to input order

◼ High dimensionality



Major Clustering Approaches (I)

◼ Partitioning approach: 

◼ Construct various partitions and then evaluate them by some 

criterion, e.g., minimizing the sum of square errors

◼ Typical methods: k-means, k-medoids, CLARANS

◼ Hierarchical approach: 

◼ Create a hierarchical decomposition of the set of data (or objects) 

using some criterion

◼ Typical methods: Diana, Agnes, BIRCH, CAMELEON

◼ Density-based approach: 

◼ Based on connectivity and density functions

◼ Typical methods: DBSACN, OPTICS, DenClue

◼ Grid-based approach: 

◼ Based on a multiple-level granularity structure

◼ Typical methods: STING, WaveCluster, CLIQUE



Major Clustering Approaches (II)

◼ Model-based: 

◼ A model is hypothesized for each of the clusters and tries to find 

the best fit of that model to each other

◼ Typical methods: EM, COBWEB

◼ Frequent pattern-based:

◼ Based on the analysis of frequent patterns

◼ Typical methods: p-Cluster

◼ User-guided or constraint-based: 

◼ Clustering by considering user-specified or application-specific 

constraints

◼ Typical methods: COD (obstacles), constrained clustering

◼ Link-based clustering:

◼ Objects are often linked together in various ways

◼ Massive links can be used to cluster objects: SimRank, LinkClus



Supervised Technique: Classification

Given a collection of records (training set )

– Each record contains a set of attributes, one of the
attributes is the class

Find a model for class attribute as a function
of the values of other attributes

Goal: previously unseen records should be
assigned a class as accurately as possible

– A test set is used to determine the accuracy of the
model. Usually, the given data set is divided into
training and test sets, with training set used to build
the model and test set used to validate it



Illustrating Classification Task

Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Learning

algorithm

Training Set



Examples of Classification Task

Predicting tumor cells as benign or malignant

Classifying credit card transactions 

as legitimate or fraudulent

Classifying secondary structures of protein 

as alpha-helix, beta-sheet, or random 

coil

Categorizing news stories as finance, 

weather, entertainment, sports, etc



Classification Techniques

Decision Tree based Methods

Rule-based Methods

Memory based reasoning

Neural Networks

Naïve Bayes and Bayesian Belief Networks

Support Vector Machines



Multiobjective Optimization: 

Example of purchasing a car

● Optimizing criteria

○ minimizing the cost, insurance premium and weight and 

○ maximizing the feel good factor while in the car.

● Constraints

○ car should have good stereo system, seats for 6 adults and a 
mileage of 20 kmpl.

● Decision variables

○ the available cars

● In many real world problems we have to simultaneously optimize 
two or more different objectives which are often competitive in 
nature

○ finding a single solution in these cases is very difficult.

○ optimizing each criterion separately may lead to good value 
of one objective while some unacceptably low value of the 
other objective(s). 24



Formal Definition of Multiobjective Optimization

❑ The multiobjective optimization can be formally stated as: 

○ Find the vector of decision variables

x=[x1, x2….. xn]T

which will satisfy the m inequality constraints:
gi(x) >=0, i=1,2,….m,

And the p equality constraints 
hi(x)=0 , i=1,2,….p.

And simultaneously optimizes M objective functions
f1(x), f2(x)…. fM(x). 

○ No concept of global optimum

○ Produce a set of trade-off solutions

❑ Pareto optimal set



Multi-Objective Problems: Dominance

● we say x dominates y if it is at least as good on all criteria and better on at least one

Dominated by x

F
1 

(m

axi

mi

ze)

F2 (maximize)

Pareto optimal front
x



Domination Relation and Pareto Optimality

●

27





Example of Dominance and Pareto-Optimality

f1(maximization)

f2(maximization)

1

2

3

4

• Here solutions 1, 2, 3 and 4 are non-dominating to each other.

• 5 is dominated by 2, 3 and 4, not by 1.

5

Pareto-optimal surface



Existing Evolutionary MOO Strategies

● A multi-objective optimization algorithm must achieve:

1. Guide the search towards the global Pareto-Optimal front.

2. Maintain solution diversity in the Pareto-Optimal front.

● EAs 

○ Search and optimization tools

○ Provide near-optimal solutions for complex, hard, multimodal problems.

● Multiobjective EAs are more popular primarily because of their population 

based nature.

29



Simulated Annealing and Multiobjective 

Optimization Problem

● Simulated Annealing (SA) is another popular search algorithm

○ utilizes the principles of statistical mechanics, regarding the 

behavior of a large number of atoms at low temperature, for 

finding minimal cost solutions to large optimization problems 

by minimizing the associated energy. 

● Only a few attempts at using SA for MOOP

○ SA usually finds one solution instead of a set of solutions

○ Difficulty in computing the acceptance probability

○ Generally in the SA based MOOP algorithms, the set of 

Pareto-optimal solutions are evolved by using multiple SA 

30



Archived Multiobjective  Simulated Annealing 

Algorithm (AMOSA)

● AMOSA 

○ Based on Simulated Annealing.

○ Incorporates the concept of an archive where the non-dominated 
solutions seen so far are stored

○ Uses clustering to restrict the size of the archive and to ensure diversity

○ Uses amount of domination for computing the acceptance probability 
depending on domination status of the new solution, current solution and 
archive

● Two limits kept on the size of the  archive:  Hard-limit and Soft-limit.

● During the process the non-dominated solutions stored in the archive as and 
when they are generated until the size of the archive increases to Soft-limit.

● There after if more non-dominated solutions are generated, the size of the 
archive is first reduced to Hard-limit by applying clustering .

31
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Amount of Domination

Given two solutions a and b, let the amount of domination be Δdom.
This Δdom value is used in AMOSA while computing the probability of 

acceptance of a newly generated solution.

B
B

A                C A             

Amount of domination between Amount of domination between 
A and B= (AC+BC). A and B= area of shaded 

rectangle



The AMOSA Algorithm

Set Tmax, Tmin, Hard-limit, Soft-limit, iter, alpha.
Set temp=Tmax.
Initialize the archive.
Current-pt=random(archive).
While (temp> Tmin){

for(i=0; i<iter; i++){
New-pt=Perturb(Current-pt)
Decision about Current-pt based on domination status
(depending on the position of current-pt, new-pt and points of the 

archive)
} 
temp=alpha*temp

}
If Archive-size > Soft-limit

Archive=cluster (Archive, Hard-limit)
Output Archive

33

A Simulated Annealing Based Multi-objective Optimization Algorithm: AMOSA , S Bandyopadhyay, S Saha, U 

Maulik, K Deb, IEEE Transaction on Evolutionary Computation, Volume 12, No. 3, June 2008, Pages 269-283 

(citations: 423).



Characteristics and Advantages of 

AMOSA

● Concept of amount of domination is used to determine the acceptance 
probability 

● Clustering used to enforce diversity of solutions.

● In AMOSA a new solution worse than the current solution may be selected. 

○ In contrast to most other MOEA’s where if a choice needs to be made between 
two solutions x and y and if x dominates y then x is always selected.

○ leads to reduced possibility of getting stuck at suboptimal regions.

■ Characteristic of single objective EAs or SAs

● All  MOEAs are so designed  that this characteristics is lost.

● The AMOSA algorithm provides a way of incorporating this feature. 

○ good performance for problems where other algorithms got stuck at local 
optima.

34

A Simulated Annealing Based Multi-objective Optimization Algorithm: AMOSA , S Bandyopadhyay, S Saha, U 
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(citations: 423).



Results with Real Coded AMOSA
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Basics of Deep Learning



Neural Architecture

● Feedforward Fully-Connected Neural Network(Also known as 

MLP)

○ A fully-connected network (FCN) consists of multiple layers of neurons,

○ Each neuron is connected to every neuron in the previous layer,

○ Each connection has its own weight.

○ It is usually used in supervised learning when labels are provided.



Neural Architecture

● Convolutional Neural Network(CNN)

○ Convolutional neural networks (CNNs) were inspired by biological process, in 

which the connectivity pattern between neurons is inspired by the organization of 

the animal visual cortex.

○ A ConvNet is able to successfully capture the Spatial and Temporal dependencies in an image 

through the application of relevant filters



Neural Architecture

● Deep Belief Network(DBN)

○ Deep Belief Networks (DBNs) are generative

graphical models which learn to extract a

deep hierarchical representation of the

input data.

○ It is composed of several shallow networks

such as restricted Boltzmann machines,

such that the hidden layer of each sub-

network serves as the visible layer of the

next sub-network.

○ The greedy layer-wise unsupervised training

is applied to DBNs with RBMs as the

building blocks for each layer.



Neural Architecture

● Autoencoder

○ Autoencoder (AE) is one of the most significant algorithms in unsupervised 

representation learning.

○ It is a powerful method to train a mapping function, which ensures the minimum 

reconstruction error between coder layer and data layer.

○ Since the hidden layer usually has smaller dimensionality than the data layer, it can 

help find the most salient features of data.



Neural Architecture

● GAN & VAE

○ Generative Adversarial Network (GAN) and Variational Autoencoder (VAE) are the most 

powerful frameworks for deep generative learning.

○ GAN aims to achieve an equilibrium between a generator and a discriminator, while VAE 

attempts to maximizing a lower bound of the data log-likelihood.

○ A series of model extensions have been developed for both GAN and VAE. Moreover, they have 

also been applied to handle clustering tasks.

Generative Adversarial Network Variational Autoencoder



Concepts of Multi-modal Approaches  

● Introduction

○ What is Multimodal?

■ Definiation, multimodal vs multimedia

○ Why multimodal

■ Multimodal applications: image captioning, video description, Audio 
Video Speech Recognition(AVSR)

○ Core technical challenges

■ Representation learning, translation, alignment, fusion and co-
learning



Introduction: Multi-modal Approaches  

● Introduction

○ Involves more than modalities and representations

○ Multiple modes, i.e., distinct “peaks” (local maxima) in the probability density function



Introduction: Multi-modal Approaches  

● Modality

○ The way in which something happens or is experienced

■ Modality refers to a certain type of information and/or the representation 

format in which information is stored.

■ Sensory modality: one of the primary forms of sensation, as vision or touch; 

channel of communication.

■ Learning from multimodal sources offers the possibility of capturing 

correspondences between modalities and gaining an in-depth understanding of 

natural phenomena



Introduction: Multi-modal Approaches  

● Examples of Multi-modal instances

○ Natural language processing (both spoken or written)

○ Visual (from images or videos)

○ Auditory (including voice, sounds and music)

○ Protein Function Prediction(Protein Sequence and Structure)

○ Biomedical Text Mining(Text, Genomic Sequence and Structure)

○ Visual(Body Language, Eye Movement, Head Gestures)



Multi-modal Approaches  

● Technical Challenges of Multi-modal instances

○ Representation: 

■ Learning how to represent and summarize multimodal data in a way that exploits the 

complementarity and redundancy of multiple modalities

○ Translation

■ How to translate (map) data from one modality to another. 

■ Not only is the data heterogeneous, but the relationship between modalities is often 

open-ended or subjective



Multi-modal Approaches  

● Technical Challenges of Multi-modal instances

○ Alignment: 

■ Identify the direct relations between (sub)elements from two or more different 

modalities.

○ Fusion

■ How to integrate information from two or more modalities to perform a prediction

○ Co-learning

■ Transfer knowledge between modalities, their representation, and their predictive 

models.



Technical Challenges  



Introduction to Computational Biology  

● Covers both biology and computational aspects

● This research field act as a bridge between the gap of biological science 

and computer science

● Recently advancement of the AI helps to better understanding of the 

computational biology

● Various machine learning and deep learning techniques are utilized to 

analysis the underlying biological datasets



Examples Computational Biology  

● Gene clustering

○ Grouping the genes on the basis of the gene  expression profile

○ In this regard, along with the traditional clustering technique, advance clustering 

technique(MOO-based, ensemble-based) is used

○ While clustering, various fitness functions are optimized. Fitness function can be 

■ Statistical aspects: Euclidean distance, Manhattan distance

■ Biological aspects: Biological Similarity, Biological relevance



Examples Computational Biology  

● Identifying Protein-protein Interactions

○ Protein-protein interaction (PPI) plays essential roles in cellular functions.

○ Most computational methods are designed to predict whether two proteins interact 

but not their interacting

○ As protein interactions generally occur via domains instead of the whole molecules, 

predicting domain-domain interaction (DDI) is an important step toward PPI 

prediction

○ For predicting the interactions, researchers have utilized the protein sequence and 

the structures 



Examples Computational Biology  

● Protein Function Prediction

○ Crucial for understanding the cellular mechanisms, identifying disease-causing 

functional changes in genes/proteins, and understanding for disease prevention, 

diagnosis, and treatment

○ Computational approaches are  developed that can efficiently predicts gene/protein 
function prediction

○ Various biological datasets are used 

■ Protein genomic sequence

■ Protein Structure

■ Gene Ontology



Examples Computational Biology  

● Protein Structure Prediction

○ Protein structure prediction is a longstanding challenge in computational biology

○ The prediction of inter-residue contacts and distances from coevolutionary data 
using deep learning has considerably advanced protein structure prediction

○ Recently, computational biologists trying to prediction efficiently the protein 
structure from the protein sequence



Examples Computational Biology  

● Biomedical Text Mining

○ Several databases have been manually curated to cache protein interaction information 

such as MINT, BIND, and SwissProt in structured and standard formats

○ The rapid growth of biomedical literature has shown a significant gap between the 

availability of biomedical article and its automatic curation

○ In the last 20 years, the overall size of biomedical corpus has increased at a exponential 

compounded annual growth rate

○ This has lead to a surge in the interest of Biomedical Natural Language Processing 

(BioNLP) community for automatic detection and extraction of PPI information.



Application of ML and DL in Computational Biology

● With the advancement of the machine learning and deep learning, researchers are utilizing those for 

solving various computational biology problems

● Few applications are 

○ Multi-objective optimization-based Gene clustering technique

○ Ensemble –based gene clustering technique

○ Deep learning-based for Genome Sequence Analysis 

○ Deep Learning-based Protein Structure Prediction

○ Deep Learning for Biological Image Analysis

○ ML/DL-based Biological Text mining



MOO-based Gene Clustering 



MOO-based Gene Clustering 

P. Dutta and S. Saha. Fusion of expression values and protein interaction information using multi-objective optimization for improving gene 

clustering. Computers in Biology and Medicine, volume 89, pages 31–43. Elsevier, 2017.



Ensemble-based Gene Clustering 



Ensemble-based Gene Clustering 
Comparative Table of BHI

Comparative Table of BSI

P. Dutta, S. Saha, S. Pai, and A. Kumar. A protein inter-action information-based generative model for enhancing gene clustering. Scientific 

Reports, Nature Publishing Group, volume 10, pages1–12, 2020.

P. Dutta and S. Saha. A weak supervision technique with a generative model for improved gene clustering. In IEEE Congress on Evolutionary 

Computation (CEC), pages 2521–2528, 2019.



Deep learning-based for Genome Sequence Analysis

● Advances in sequencing technology have led to a large and rapidly 

increasing amount of genetic and protein sequences, 

● The sequence can nucleotide sequence(A,T G and C) or amino acid 

sequence which contain crucial information for phylogenetics and 

evolutionary biology

● Genome sequence is widely utilized by researchers for solving popular 

biomedical problems



Predicting Specificities of DNA- and RNA-binding Proteins 



Predicting Effects of Noncoding Variants

● Identifying functional effects of noncoding variants is a 

major challenge in human genetics. 

● DeepSEA (deep learning–based sequence analyzer) use 

convolutional neural network

● For training the model from genomic sequence by 

simultaneously predict large-scale chromatin-profiling data, 

including TF binding, DNase I sensitivity and histone-mark 

profiles

● Three major features 

○ integrating sequence information from a wide sequence context

○ learning sequence code at multiple spatial scales with a hierarchical 

architecture

○ multitask joint learning of diverse chromatin factors sharing 

predictive features

Zhou et. al. Nature Methods(2015)



AlphaFold: Protein Structure Prediction

● Protein structure prediction can be used to determine the three-dimensional shape of a protein 

from its amino acid sequence

● Train a neural network to make accurate predictions of the distances between pairs of residues

Senior et. al. Nature (2019)

● Predict the structure itself accurately 

by minimizing the potential by 

gradient descent

● The neural network predictions 

include backbone torsion angles and 

pairwise distances between residues

● Both the torsion angle and the 

distance provide more specific 

information for protein structure



Deep Learning Fundus Image Analysis for Diabetic Retinopathy 

● Diabetes is a globally prevalent disease that can cause diabetic 

retinopathy and macular edema in the human eye retina

● To extract features from the retinal image,  convolutional neural 

network is used

○ Inception-v3 architecture that was pretrained on ImageNet dataset

● Provide novel results for five different screening and clinical grading 

systems for diabetic retinopathy and macular edema classification

Sahlsten et. al(2019), Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading, Scientific 

Reports



Deep Learning-based Biomedical Text Mining

● The exponential growth of the biomedical corpus has lead to a surge in the interest of Biomedical 

Natural Language Processing (BioNLP) community for automatic detection and extraction of PPI 

information

● A novel method based on attentive deep RNN, which combines multiple levels of representations 

exploiting word sequences and dependency path related information to identify protein–protein 

interaction (PPI) information from the text

● Leverages joint modeling of proteins 

and relations in a single unified 

framework, which is named as the 

‘Attentive Shortest Dependency 

Path LSTM’

● five popular benchmark PPI 

datasets, namely AiMed, BioInfer, 

HPRD50, IEPA, and LLL
Yadav et. al(2019), Feature assisted stacked attentive shortest 

dependency path based Bi-LSTM model for protein–protein interaction, 

Knowledge-Based Systems



Deep Multi-modal Approach for Computational Biology

● Multi-omics data is popular due its insightful information

● Analyzing the relation between the modalities helps to get more 

comprehensive overview of the physiological information 

● Proper deep learning models are required for extracting the 

information

● Amalgamation of all the extracted features 



Deep Multi-modal Approach for Computational Biology

● Various modalities

( http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1388 )

GENE EXPRESSION PROFILE PROTEIN-PROTEIN INTERACTION NETWORK

( http://hprd.org/download )

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1388
http://hprd.org/download


Deep Multi-modal Approach for Computational Biology

● Various modalities

Ensembl(https://asia.ensembl.org/index.html)

PROTEIN SEQUENCE PROTEIN 3D STRUCTURE

RCSB PDB Database(https://www.rcsb.org/)

https://asia.ensembl.org/index.html


Information Content and Analysis Methods for Multi-
omics data

● Analysis various modalities of omics data using 

computational methods

● The extracted information is finally concatenated 

to perform the final prediction

● 47 datasets/predictive tasks that in total span 

over 9 data modalities and executed analytic 

experiments for predicting various clinical 

phenotypes and outcomes

● The integrated information is more crucial than 

any single modality

Ray et. al(2020), Information content and analysis

methods for Multi-Modal High-Throughput Biomedical Data

Scientific Reports



Deep Multi-modal for Breast Cancer Prognosis

● Accurate prognosis prediction of breast cancer can spare a significant number of patients from 

receiving unnecessary treatment

● A Multi modal Deep Neural Network by integrating Multi-dimensional Data ( MDNNMD) for the 

prognosis prediction of breast cancer.

● Gene expression profile , Copy number alteration (CNA) profile and clinical data are considered 

as various modalities

● Extracted features are integrated 

using score level fusion for the final 

prediction model

Sun et. al(2018), A multi modal deep neural 

network for human breast cancer prognosis 

prediction by integrating multi multi-dimensional 

data, IEEE/ACM TCBB



DeepGO: Predicting Protein Functions from Protein 
Sequence and Interactions

● Deep learning models are utilized  to learn features 

from protein sequences as well as a cross-species 

protein–protein interaction network.

● Outputs information in the structure of the GO and 

utilizes the dependencies between GO classes as 

background information to construct a deep learning 

model. 

● Evaluate the method using the standards established by 

the Computational Assessment of Function Annotation 

(CAFA) 

● Demonstrate a significant improvement over baseline 

methods such as BLAST, in particular for predicting 

cellular locations.

Kulmanov et. al(2017), DeepGO: predicting protein functions from

sequence and interactions using a deep ontology-aware classifier, 

Bioinformatics



Deep Multi-modal for Breast Cancer Prognosis

● Accurate prognosis prediction of breast cancer can spare a significant number of patients from 

receiving unnecessary treatment

● A Multi modal Deep Neural Network by integrating Multi-dimensional Data ( MDNNMD) for the 

prognosis prediction of breast cancer.

● Gene expression profile , Copy number alteration (CNA) profile and clinical data are considered 

as various modalities

● Extracted features are integrated 

using score level fusion for the final 

prediction model

Sun et. al(2018), A multi modal deep neural 

network for human breast cancer prognosis 

prediction by integrating multi multi-dimensional 

data, IEEE/ACM TCBB



Enhancing Drug-drug Interaction from text and Molecular 
Structure
● Propose a novel neural method to extract drug-drug interactions (DDIs) from texts using external 

drug molecular structure information

● Encode textual drug pairs with convolutional neural networks

● Molecular pairs with graph convolutional networks (GCNs)

● concatenate the outputs of these two networks

● In the experiments,  GCNs can 

predict DDIs from the molecular 

structures of drugs in high accuracy

● The molecular information can 

enhance text-based DDI extraction

Asada et. al(2018), Enhancing Drug-Drug 

Interaction Extraction from Texts by Molecular 

Structure Information ACL



Identifying Protein Interactions by Amalgamating Protein 
Sequence, Structure and Text

● Exemplified two popular benchmark PPI 

corpora(BioInfer and HRPD50) in multi-modal scenario 

● Besides existing textual modalities, 3D protein 

structure and underlying genomic sequence of each 

proteins are added to each instance 

● Utilized graph convolutional neural network for 

capturing the atomic representation of the protein 

structure

● Finally, self attention-based multi-modal architecture is 

designed to predict protein interactions

Dutta et. al(2020), Amalgamation of protein sequence, structure and 

textual information for improving protein-protein interaction identification, 

ACL



Future Work and Conclusion

● More efficient models for analyzing biological modalities

○ Protein structure is 3D and unsymmetrical

○ Time efficient model for understanding long protein sequences (>5000 

nucleotides)

● Improved integration technique for multi-modal approach

○ attention mechanism

● Addressing incomplete multi-modal instances

○ GAN, shape Boltzmann machine 
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